Quasi-maximum likelihood estimation for a class

of continuous-time long-memory processes

HENGHSIU TSAT *
Institute of Statistical Science, Academia Sinica, Taipet,
Taiwan 115, R.0O.C.
K. S. CHAN
Department of Statistics and Actuarial Science,

University of Towa, Iowa City, IA 52242, U.S.A.

April 27, 2003

Abstract

Tsai and Chan (2003, an unpublished manuscript) has recently introduced the
Continuous-time Auto-Regressive Fractionally Integrated Moving-Average (CARFIMA)
Models useful for studying long-memory data. We consider the estimation of the
CARFIMA Models with discrete-time data by maximizing the Whittle likelihood.
We show that the quasi-maximum likelihood estimator is asymptotically normal
and efficient. Finite-sample properties of the quasi-maximum likelihood estimator
and those of the exact maximum likelihood estimator are compared by simula-
tions. Simulations suggest that for finite samples, the quasi-maximum likelihood
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maximum likelihood estimator. We illustrate the method with a real application.
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1 Introduction

It is well known that the long range dependence properties of time series data
have found diverse applications in many fields including hydrology, economics and
telecommunications; see Bloomfield (1992), Robinson (1993), Beran (1994), Baillie
(1996) and Ray and Tsay (1997). Extensive work has been done for discrete time
long memory processes in the literature; see Sowell (1992), Robinson (1995) and
Chan and Palma (1998). A commonly used model for such processes is the au-
toregressive fractionally integrated moving-average (ARFIMA) model, see Granger
and Joyeux (1980). For continuous-time long memory modelling, Comte and Re-
nault (1996) developed a general class of linear continuous time processes that
exhibit long range dependence. Comte (1996) studied the statistical inference of a
first-order fractional stochastic differential equation (SDE).

Recently Tsai and Chan (2003, an unpublished manuscript) developed the
continuous-time autoregressive fractionally integrated moving average (CARFIMA)
models of general order that are based on the stochastic calculus of fractional
Brownian motions developed by Duncan et al. (2000). Tsai and Chan (2003, an
unpublished manuscript) studied the use of the innovations algorithm for maxi-
mum likelihood estimation of the CARFIMA models with discrete-time data. The
innovations algorithm has the merit of being able to handle irregularly-spaced
time series data. Moreover, the predictive residuals generated by the innovations
algorithm can be used for model diagnostics. However, the innovations algorithm
suffers from the drawback of being computer intensive so that its use becomes
increasingly prohibitive with increasing large sample size. Here, we aim to study
an alternative estimation method that is both fast and statistically efficient.

In the discrete-time framework, computations can be sped up via several pos-
sible approaches for approximating the Gaussian likelihood function; see Beran
(1994). Comte (1996) studied two approximation methods for estimating a first-
order continuous-time long-memory model with regularly-spaced data, namely the
Whittle (1953) likelihood approach and a semi-parametric technique proposed by
Geweke and Porter-Hudak (1983) that first estimates the long memory param-
eter by a log-periodogram regression and then estimates the other parameters

by maximizing an associated approximating AR(1) process. While Comte (1996)



mentioned that both methods can be generalized to fractional stochastic differen-
tial equations of higher order, this extension has not been explicitly reported in
the literature. Although Comte (1996) mentioned that the later method is much
faster than the former one, it seems that the Whittle likelihood method can be
more readily generalized to the case of higher order CARFIMA models.

In this paper, we develop the Whittle likelihood approach to estimating a
general-order stationary CARFIMA model (Tsai and Chan 2003, an unpublished
manuscript) with regularly-spaced discrete time data. The paper is organized
as follows. In section 2, we briefly review the CARFIMA model of Tsai and
Chan (2003, an unpublished manuscript) and derive the spectral density function
of a stationary CARFIMA model. Quasi-maximum likelihood estimation of a
stationary CARFIMA model via maximizing the Whittle likelihood is discussed
in section 3. Sections 4 and 5 consider respectively the large sample and finite
sample properties of the quasi-maximum likelihood estimator. A real application
is illustrated in section 6. We briefly conclude in section 7. All proofs are collected

in an appendix.

2 Continuous-time fractionally integrated ARMA
processes

Heuristically, a CARFIMA (p,H,q) process is the solution of a p-th order stochas-
tic differential equation with suitable initial condition and driven by a standard
fractional Brownian motion with Hurst parameter H and its derivatives up to and

including order 0 < ¢ < p. Specifically, for ¢ > 0,
VP o =Yy — a0 = o{ B + BB + o+ BBIDY (1)

where 0 < ¢ < p and {B;y = Bff,t > 0} is the standard fractional Brownian
motion with Hurst parameter 1/2 < H < 1; the superscript @) denotes j-fold
differentiation with respect to t. We assume that ¢ > 0 and 8, # 0, dY;(j N =
VWt j=1,...p—1.

However, the fractional Brownian motion is nowhere differentiable (see Man-

delbrot and Van Ness, 1968) so the stochastic equation (1) has to be appropriately



interpreted as some integral equation as explained below. Analogous to the case
of continuous-time ARMA processes (see, e.g., Brockwell, 1993), equation (1) can

be equivalently cast in terms of the observation and state equations:

}/:‘, = ﬂlXta t 2 Oa (2)
dX; = (AX;+ aodp)dt + a6,dBF, (3)

where the superscript ' denotes taking transpose,

0 1 0 -0 © 0 1
0 0 1 -0 x 0 8
A= , Xp=| ¢ , =111, B= N
0 0 0 -1 X2 0 Bys
| 1 Qg Q3 - Cp | I t(p_l) ] | 1 ] | 5;0—1 ]

and B; = 0 for j > ¢. Equation (3) for the state vector X; is defined by the
stochastic calculus developed by Duncan et al. (2000). In the case that §; = 0,
J > 1, the state vector X; becomes the vector of derivatives of the continuous-time
fractionally integrated AR(p) process {Y;}.

The process {Y;,t > 0} is said to be a CARFIMA(p,H,q) process with pa-
rameter (0,0) = (ag, ..., 0y, b1, -+, By, H,0) f Y, = B’ X,, where X, is the solution
of (3) with the initial condition X, of finite variance. Tsai and Chan (2003, an
unpublished manuscript) showed that the solution of (3) can be written as

t t
X, = e X, + ao/ eA(t_“)(Spdu + 0/ eA(t_“)(Sdef, (4)
0 0

where e = I + 3% {(At)*(n!)"'}, and I is the identity matrix. Tsai and Chan
(2003, an unpublished manuscript) derived an asymptotic stationarity condition
for the CARFIMA model, namely all eigenvalues of A have negative real parts.
Moreover, they showed that the stationary mean equals p = —(«/aq)d1, where

9 =[1,0,---,0]" and that the autocovariance function of {V;,¢ > 0} equals

w(h) = cov(Yen, Y)
h 0
— CH,BleAh (/ e—Auu2H—2du> V*ﬁ + CHBIG_Ah (/ eAUUQH—Qdu> V*ﬂ
0 h
+Cy et (/oo eA“u2H2du> V*B. (5)
0
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We now derive a closed-form expression for the spectral density function of
{Y;,t > 0}. First note that spectral density function is independent of the value of
ap. Therefore, without loss of generality, assume ay = 0. Then equation (1) can

be written as

a(D)Y; = of(D)DB/, (6)

where
az) = P -0t = —ay, (7)
B(z) = 1+ Biz+foz” + -+ B2l (8)

By equations (4.12.45) and (4.12.47) of Priestley (1981), the (continuous time)
spectral density of {Y;,¢ > 0} equals

hy(w) — 0_2 |ﬁ(lw)|2h (w), (9)

ja(iw)[>
where {h.(w)} is the spectral density function of {e?,¢ > 0} and B = [; ¢! du.
Note that

¢
cov(B/!, BY) = cov (/ efdu/ Hdv) //cov M dudv. (10)
0

But by Duncan (1999),

t s
cov(BH, By = H(2H — 1)/ / lu — w222 dud. (11)
0 Jo
Comparing equations (11) and (10), we get cov(el | ef) = H(2H — 1)|u — v 2.

Therefore, the covariance function for {¢Z,u > 0} equals v.(7) = cov(e, , ef) =

H(2H — 1)|7|*#~2. Consequently, the spectral density function of {€,¢ > 0} can

be obtained as the Fourier transform of 7,(7), i.e.

1 * —iwT
hew) = 5 [ e m(rdr
H(2H —1) oo
— ¥/ €_W)T|T‘2H_2d7'
27'(' —00
= HCH =D orom — 1)w[ 27 cos [ n - 1)]
2T 2
_ %F(2H+1)|w|1_2Hsin(7rH), (12)

where I'() is the Gamma function. The spectral density function of {¥;,¢ > 0}
derived heuristically above can be proved rigorously. We summarize the above

result in the following theorem.



THEOREM 1 The spectral density function of {Y;,t > 0} equals

o? \5(zw)|

h = —T(2H + 1)sin(rH)|w|" " 13
y (w) o (2H + 1) sin(nH)|w| la(w)|® (13)
Notice that for H = 1/2, h(w) = 1/(27), and the spectral density function

given by equation (13) becomes that of the short-memory CARMA (p,q) process.

3 Quasi-maximum likelihood estimation

Let {Yin}i=1,.. n be the observations, where h being the step size. By the aliasing

formula, the (discrete time) spectral density of Y equals

Fa(w, 6, 0%) Z hy (“’ * 2’”) (14)

h iz
see Priestley (1981) and Comte (1996). Let r denote the largest integer smaller
than or equal to (N —1)/2. The (negative) log-likelihood function of {Y;;} can be
approximated by the (negative) Whittle log-likelihood function (see Beran, 1994
and Dahlhaus, 1989):
B T (1w
_lw(ga 02) = Z {lOg fh(wja 9, 02) + M} ) (15)

j=1 Ju(w;, 0,02)

where 6 := (01, --,0p1q11) = (1,00, 51, -, By, H), wj :=2mj/N € (0,7) is
the Fourier frequency, and
o Lvely
—Y)e Y==)Y,
Yin ; h

1
IN :—N

Letting gn(w;,0) = fn(w;,0)/0?, the (negative) Whittle log-likelihood func-

tion (15) can be rewritten as

: - Iy (wj)
—1,(0,0%) = {10g02+10gg w;, 0 +7J}. 16
( ) ]gl h( J ) 0'2gh(wj',0) ( )
Differentiating (16) with respect to o and equating to zero gives
o 1 . IN(“’J')

o2 = N M

L) gh(wj’ 0)
2mh T IN (UJJ) (17)

- rT'(2H 4 1) sin(7H) Zl gr(w;,0)’



where

Q

. . [w+2km
0= 5 (£22)

keZ

> g (U4 (19

|k|<M

for some large M, and

* _ w 1-2H \ﬂ(zw)|2

In practice, setting M = 100 yields sufficient accuracy; see Comte (1996) and
Percival and Walden (2000, p. 280).
Substituting equation (17) into (16) yields the objective function

—lu,(0) = > loggn(w;,8) +rlog (Z M) + constant

j=1 j=1 gn(wy, )
_w ) ~ In(w;)
= Y logg;(wj,0) +rlog | Y ———5 | + constant. (19)
j=1 j=1 g (w;,0)
The objective function is then minimized with respect to 6 to get the quasi-
maximum likelihood estimator (QMLE) f. The estimator 2 is then calculated

by (17).

4 Large sample properties of the quasi-maximum

likelihood estimator

For regularly-spaced time series data sampled from a stationary CARFIMA (p,H,q)
process, the quasi-maximum likelihood estimator can be shown to be asymptot-
ically normal and efficient by making use of some results in Dahlhaus (Theo-
rems 2.1 and 4.1, 1989). For simplicity, in this section, we augment o into
0 = (ag, ..., 0, B1, - -, Bg, H, o). Let @ be the quasi-maximum likelihood estimator

that minimizes the negative Whittle log-likelihood function (15).

THEOREM 2 LetY = {Y,.}}, be sampled from a stationary CARFIMA (p,H,q)
process, where t; = th with h > 0 being the step size. Let the quasi-mazimum like-
lihood estimator 0 = Oy € ©, a compact parameter space, and the true parameter

Oy be in the interior of the parameter space. Then,
VN (0 - 6)) — N(0,T,(6))
. 1 g
with Th(6) = — [ (v10g fu(@))(V log f())'da,



where 17 denotes taking the derivative w.r.t. . Moreover, 0 is asymptotically
efficient.

We note that the compactness condition on the parameter space is taken from
condition (A0) in Dahlhaus (1989) who pointed out that the quasi-maximum like-

lihood estimator may lie on the boundary of the compact parameter space.

5 Simulation studies

The purpose of this section is to evaluate the finite sample performance of the
quasi-maximum likelihood estimator. We consider five CARFIMA (p,H,0) models
for p =1 and p = 2. For each model, we simulated regularly spaced time series
data, Y¥; = Xi(o),i = 1,..., N, by the method of Davies and Harte’s (1987). See
also Comte (1996). The sample size is always N = 512. Each experiment is
replicated 1000 times. The quasi-maximum likelihood estimates were obtained
by constrained numerical optimization via the DBCONF subroutine of the IMSL
package that approximates derivatives by a finite-difference scheme. The parameter
H is constrained to be between 0.50 and 0.99, and the a’s between —103° and 0. For
comparison purposes, we also compute the exact maximum likelihood estimators
(exact MLEs) (see Tsai and Chan, 2003, an unpublished manuscript, for details).
While theory predicts normality, the estimates of the a’s appear to be non-normal
and have a few outliers, perhaps because the sample size is not yet large enough.
Consequently, we report in Table 1 robust summary statistics for the location and
spread of the estimators. Specifically we use the median as a location measure and
s = y/m/2x the mean of the absolute deviations of the estimates from the median
as a measure of the spread. We also report the theoretical asymptotic standard
errors of the parameter estimators, which are computed from I';(#) defined in
Theorem 2. Finally, we compute for each parameter of each model the empirical
coverage rates of the 95% confidence intervals using the asymptotic standard errors;
these confidence intervals take the form of estimate £ 1.96 x the asymptotic
standard error.

The value M of equation (18) is set to be 100. We have tried different M in

the program and the results are very robust to the choice of M. The initial values



of the DBCONTF are conveniently set to be the true values. We have tried different
initial values in the program and the results are very robust to the choice of the
initial values. From Table 1, it can be seen that the biases of the exact MLEs are
generally larger than those of the Whittle MLEs, whereas the standard errors of
the former are smaller than those of the latter. In terms of the empirical coverage
rates, confidence intervals centered at the exact MLEs are closer to the nominal
values for the parameters o’s and ¢ but intervals centered at the Whittle MLEs

are closer to the nominal values for the long memory parameter H.

6 Application

Ezxzample: We consider a series of annual tree ring measurements from New
Mexico, USA, from 837 through 1989 AD, a total of 1,153 data. Each tree ring
measurement represents the relative or normalized tree-ring width, in dimension-
less units, which depicts the annual growth of a tree; the data are posted in the file
NM560.DAT at the website http://www-personal.buseco.monash.edu.au/ hyndman/TSDL.
Many tree ring data exhibit the long range dependence properties; see Baillie
(1996). Figure la displays the time series plot of the tree ring measurements,
whereas figure 1b exhibits the sample autocorrelation of the data. We have fit-
ted CARFIM A(p, H,0) models to the tree ring data with the autoregressive or-
der 0 < p < 4. For p < 2, the initial value of H is set to be 0.75 and those
of a’s equal —1.0. For p > 3, the initial value of H is set to be the estimate
of H from p = 2 and those of a’s obtained by maximizing the Whittle likeli-
hood with H fixed at the initial value. We report in Table 2 the quasi-maximum
likelihood estimates of H for different p and the corresponding Akaike informa-
tion criterion AIC = —2(ly(f) — ), where r is the number of parameters in
the model, —Iy is replaced by —I,, expressed in equation (19) without the con-
stant term, and 0 is the quasi-maximum likelihood estimator of . Based on the
AIC, the autoregressive order is selected as p = 2. The parameter estimates are
(H, b1, bs,6) = (0.7858, —11.55, —3.427,4.534). We have also checked the residu-
als computed by the innovations algorithm (Tsai and Chan, 2003, an unpublished
manuscript) and they appear to be white, suggesting that this model provides



Table 1: Comparison between the quasi-maximum likelihood estimator and the

exact maximum likelihood estimator. The table list for each estimation method

the median, (s = 4/7/2 X mean|estimates-median(estimates)|) and (c=empirical

coverage rates of the 95% C.I. using the asymptotic std. error) of 1,000 simulated

values. The sample size is 512.

quasi-MLE exact MLE
true asymptotic
p value | median (s) (c) median  (s) (c) std. error
1| H| 0.6 | 05952 (0.0744) (0.975) | 0.5695 (0.0685) (0.995) |  0.0692
ar | -2 | -1.9775 (1.0529) (0.909) | -1.8231 (0.6282) (0.955) |  0.6048
o | 2 | 1.9951 (0.6699) (0.903) | 1.8732 (0.3915) (0.954) |  0.3864
1 0.75 | 0.7475 (0.0781) (0.910) | 0.7182 (0.0785) (0.871) |  0.0640
ar | -2 | -1.9832 (0.7423) (0.891) | -1.8081 (0.5826) (0.919) |  0.5482
o | 2 | 1.9995 (0.7532) (0.899) | 1.8257 (0.4696) (0.961) |  0.4618
1 0.9 | 0.9019 (0.0737) (0.937) | 0.8611 (0.0744) (0.870) |  0.0624
ar | -2 | -2.0144 (0.6029) (0.911) | -1.7596 (0.4899)(0.937) |  0.5247
o | 2 | 2.0353 (1.6191) (0.782) | 1.6339 (0.6055) (0.986) | 0.8226
2| H | 0.75 | 0.7518 (0.0510) (0.923) | 0.7364 (0.0490) (0.918) | 0.0475
ar | -2 | -2.0096 (0.1559) (0.936) | -1.9708 (0.1504) (0.944) |  0.1465
as | -1 | -0.9988 (0.1143) (0.940) | -0.9890 (0.1122) (0.945) | 0.1083
o 2 2.0172 (0.1751) (0.918) | 1.9609 (0.1535) (0.959) 0.1563
2 0.9 | 0.9072 (0.0630) (0.949) | 0.8701 (0.0580) (0.903) |  0.0584
ar | -3 | -3.0205 (0.3758) (0.915) | -2.8669 (0.3498) (0.931) |  0.3446
as | -2 | -1.9750 (0.3049) (0.935) | -1.9893 (0.3107) (0.928) |  0.2905
o | 2 | 2.0743 (1.0059) (0.797) | 1.7937 (0.3992) (0.986) | 0.5209
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Table 2: AIC and Maximum likelihood estimates of H
P 0 1 2 3 4

original data | AIC | -2178.74 -2178.93 -2179.88 -2178.69 -2176.04
(N=1153) H 0.6452 0.7860 0.7858 0.6895 0.7737

adequate fit to the data.

To assess the accuracy of the quasi-maximum likelihood estimator, we have
carried out parametric bootstrap with bootstrap size equal to 1000. Except for
H, The bootstrap estimates appear to have skewed distributions; consequently we
report the 95% bootstrap confidence intervals for the estimates in Table 3; these
confidence intervals are obtained by the percentile method (Efron and Tibshirani,
1993, Ch. 13) with the 2.5 and 97.5 percentiles of the bootstrap estimates as end
points of the 95% confidence intervals. The 95% confidence interval of H extends
from 0.7275 to 0.8617, suggesting that the data are indeed of long memory. We
have also reported in Table 3 the asymptotic standard errors of the estimator which
except for H, are substantially larger than their bootstrap counterparts. Therefore,
we re-did the bootstrap study with larger sample sizes. Table 3 suggests that the
relative differences between the bootstrap standard errors and their asymptotic
counterparts become smaller with larger sample size, although the differences are
still noticeable even with N = 8192. In particular, we recommend using parametric
bootstrap to calibrate the uncertainty of the quasi-maximum likelihood estimator.

The population spectral density function can be estimated by (13) with the
unknown parameters there replaced by the quasi-maximum likelihood estimates.
While the estimated spectral density peaks only at 0 with a singularity there
(Fig. 2, over the range 0 < w < 5), the squared magnitude of the transfer function
of the autoregressive filter, i.e. 1/|a(iw)|?, peaks at w = 2.38, with the corre-
sponding period equal to 27/2.38 = 2.64 years. Thus, besides the long-memory
component, the tree ring dataset admits a short-memory component with a signif-

icant contribution from cycles of period about 2.64 years.
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Figure 1: The annual tree ring measurements from New Mexico, USA; (a) time

series plot and (b) sample autocorrelation function.
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Figure 2: The spectral density of the fitted model and squared magnitude of the

transfer function of the autoregressive part of the model.
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Table 3: 95% parametric bootstrap confidence intervals of the fit-

ted CARFIMA model for the tree ring data. @ We have also re-

mean|estimates-median (estimates)|) of the bootstrap estimates as well as

ported the median and a robust spread measure (s =

the asymptotic standard errors of the quasi-maximum likelihood estima-

tors.
95% bootstrap

N estimated confidence asymptotic
value median  (s) intervals std. error

H | 07858 |0.7972 (0.0333) | (0.7275, 0.8617) |  0.0334

1153 | o -11.55 -11.48 (4.843) | (-26.71, -7.248) 11.63

ap | -3.427 | -3.228 (1.036) | (-5.443,-1.952) | 2.917

o | 4534 | 4.475 (1.758) | (2.792,9.731) 4.482

0.7858 0.7902 (0.0178) | (0.7533, 0.8247) 0.0177

4096 | oy | -11.55 | -11.37 (3.107) | (-20.93,-8.187) |  6.172

as | -3.427 | -3.365 (0.7298) | (-4.913,-2.326) |  1.547

o 4.534 4.473 (1.178) (3.1702, 7.928) 2.378

0.7858 0.7892 (0.0123) | (0.7651, 0.8142) 0.0125

8192 | oy | -11.55 | -11.90 (2.874) | (-19.74,-8.676) |  4.364

ap | -3.427 | -3.516 (0.6526) | (-4.815,-2.559) |  1.094

o | 4534 | 4.678 (1.088) | (3.394, 7.495) 1.682

7 Conclusion

We have shown that the quasi-maximum likelihood estimator provides an useful
alternative to the exact maximum likelihood estimator of a stationary CARFIMA
model. A limitation of the quasi-maximum likelihood approach is that the data
must be sampled regularly. Extension of the method to irregularly spaced data

will be of much interest especially if a speedy implementation is available.
APPENDIX

Proof of Theorem 1
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The spectral density function of {Y;, ¢ > 0} equals

1 oo
hy(w) = o= [ e y(ndr

1 o
- R { —twT d }’
e /0 e vy (T)dT

™

where Re{-} means the real part of the item in the parenthesis. Note that
/OOO e~y (T)dr
= Cy /Ooo e T pleAT (/OT eA“UQHQdu> V*Bdr
+Cy /OOO e~ TRy e AT (/Too eAIUUQH_Qdu) Bdr
Cu /OOO e~ T BleAT (/Ooo eA“UQH_Qdu) V*Bdr
= —20f (A +utD) AV B ([T et )
—2iwCy B (A* + w?I)™* (/Ooo eA“u2H2du) V*B.
Thus,
hy (w) = —%Cgﬁ'(AQ + W) LAV SR { /0 ” e_i“’“u2H_2du} . (20)

By equation (6.20) of Karatzas and Shreve (1991), we have

AV* + VA = —6%6,0), (21)
which implies that
B A+ wI)TTAV* B = —o?BA(A+iwl) (A —iwl) 6,6, (A +iwl) 'S
—B'(A+iwl)TPAV* (A" +iwl) 1B, (22)

and
1
B'(A+iwl) PAVH(A +iwl) 7B = _5(;25'(,4 + iwl) 6,0, (A" +iwl) 7' 8. (23)
Substituting equation (23) into equation (22) we get

B'(A? +w?I) T AV*p

0.2

=~ A A= wl) 68,4 + iwl)”'
o |B(iw)?

2 Ja(iw)
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the last equality following from the fact that —a(s)(A —sI) 16, = [1,s,---, s 1]
By equations (20) and (24), we have

hy (w) = CHligzZ;:QR{/ooeiw"u2H2du}
= C }68231 / e~ | 2H 2 dy
| (iw)[?

= 0 \a(zw)|2h€(w)'

This completes the proof of Theorem 1.
Proof of Theorem 2

Theorem 2 follows from Theorems 2.1 and 4.1 of Dahlhaus (1989) if we can
verify conditions (A0)-(A7) listed there. Incidentally, assumption (A8) there also
holds as «(f) appearing in (A1-7) can be chosen to be 2H — 1 that is independent
of #. We now verify (A0-7).

(A0) The identifiability of the model with regularly spaced data can be checked as
follows. Without loss of generality, let A = 1. Denote the (discrete time) spectral
density of Y = {Y;,i € Z} by
fw) = fe(w) + 3 fe(w + 27k),
k#0
where f.(w) = hy(w) is given by (13). Consider

log f(w) = log f.(w)+ log {EWOJ;(&;%/@)H}

= (1 —2H)log|w|+log{g(H)} + log{L(w)}
+ log{|w|2H_1x(w) - 1} , (25)

where g(H) = sin(rH)['(2H + 1)/(27), L(w) = ¢?|8(iw)|?/|a(iw)|?, and z(w) =
ko felw +2mk) /{g(H)L(w)}. It follows from lim,,_,,log f(w)/log|w| = 1—2H
that the Hurst parameter H is identifiable. By equation (25), we have lim,,_,o{log f(w)—

(1-2H) log|w|}—log{g(H)} = log{L(0)}, which implies the identifiability of L(0).
Again from equation (25),

lim lm?”%{log f(w) — (1 -2H)log \w\}]

w—0
_ 2-2H 1 0L(w) w2 S (w)
o wlino [|w| wlino { L(w) ow + wlino R(w)
— (2H - 1)2(0),



where R(w) = |w]?" lz(w) + 1, S(w) = 2H — 1)|w|*2z(w) + |w*2 1z (w),
i(w) = dz(w)/dw and L(0) = dL(w)/dw|y—o; hence z(0) is identifiable. Tt can be
checked that z(w) — z(0) = wO( ) for w tending to 0. Now,

Jim —{logf( ) — (1 —2H)log |wl}

- Ji%{ﬁaﬂ%fu b, S0

L)

L(0)’
showing that L(0) is identifiable. Similarly, given the spectral density function of

the discrete-time data, we can compute all the higher derivatives of z and L at 0.
Because L(w) is an analytic function for real w, it is uniquely determined by all
of its derivatives at 0. By analytic continuation, L(w) as a meromorphic function
with complex w is determined for all w. The poles of L then determine uniquely
the coefficients in a(z) and the zeroes of L then determine all the coefficients in
B(z). The value of L at a regular w, i.e. a non-zero or pole of L, then determines
the instantaneous variance o?.

(A1) u(0) = J™_log f(x)dz can be differentiated twice under the integral.
Verification of (Al): We only give the proof that u(#) is differentiable with re-
spect to # as the argument for the twice-differentiability of u is similar. Suppose

differentiation and integration can be interchanged, so that

0 s
™ 0
= /”%log{;fc(aﬁ—i—%rk)}dx

_ [ %;{%ﬂ(x%—%k)}dx

-7

= /_7; ﬁ ; {fc(x + 27rk)660 log fe(x + 27rk)} dx.

We can justify the interchange by showing that the integrand of the last integral is
absolutely integrable as follows. Because f(z) is bounded away from 0 on [—m, 7],

there exists some § > 0 such that f(z) > § > 0 for all z € [—n, 7]. Therefore,

/_7; 1 Z{fc(x+27rk)%logfc(x+27rk)}

fl@) %
< % [/W Z{fc(x+27rk)880logfc(:c+27rk)} dx+/

k0

dz

59 108 fe(z)|d

] |
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Below g;(H), 1 < i < 5, denote some generic function of H. Note that dlog f.(z +
2nk)/OH = —2log |x + 2kw| + ¢g1(H), hence

m 0 w
— <
/7r FTi log f.(z)|dx < 2/7r log |z]dz + g2(H) < o0,
and
g 0
/ Z {fc(x + 27k) = log f.(z + 27rk)} dx
7 |20 0H
< 2/" S fulx + 27k) log | + 2k || dx + g (H) / S ol + 20k) | da

™

- Blilz + 2km))”
x+2k7r12Hlogx+2k7r\| ,
kz#o‘ | | la(i(x + 2km))|?

|Bi(x + 2km))[*
la(i(z + 2km)) 2

= 293(H)/

-7

™

+g4(H)/

-

3 |z + 2k |2
k#0

dx. (26)

Because limy, o |7 + 2k7|* 22 log |z + 2k7| = 0, and lim;, o |z + 2kn|} 22 =0,
there exists constants y; and 7, such that for all £ # 0 and —7 < z < 7, |z +
2km|' =" log |z +2kn| < 71, and |z +2km|' 727 < 7. Therefore, from equation (26),

i < g [ 10020

we have
9
> {fc(:H 2rk) - log f(z + 2”’“)} & (i + 2km)) 2

L= 7

This shows that u(#) can be differentiated with respect to H under the integral.

Note also that

0 B 1 0|B(i(x + 2km))|?
55, 08 T T 2R = T ok e 0B

which is a rational polynomial whose denominator is of higher or equal degree

than the numerator, and |3(i(z + 2k7))|? > 0, so dlog f.(z + 27k)/0; is bounded

above. Therefore, it can be seen that u(#) is differentiable with respect to the §;’s
under the integral. Similarly, u(0) is differentiable with respect to the «;’s.

There exists a function d : © — (0, 1) such that for each ¢ > 0:

(A2) f(z) is continuous at all (z,6), z # 0, f(x)~! is continuous at all (x,6) and
f(@) = O(|z[~1=7).

Verification of (A2): It is obvious that f(x) is continuous at all (z,6), = # 0 and
f(x)~! is continuous at all (z,6). Note that

f(x) = g(H)z|"*"L(x) + gﬁ: fe(z + 27k)

18
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g(H)|z|' 72" L(0), for z — 0

Q

= O(|z[*"?"7%) for all § > 0.

Thus, we can choose d(f) = 2H — 1 here and also for the remaining conditions.
(43)

9
' 06;00,06,

82

v -1

0 .4 —1
a_ejf (z) [ (@)

are continuous at all (z,6) and

o . _ |
[ @) = 02| O70),1 < j < p,
00;

0? _ _ )
J
0* 1 d(0)—6
— = - < <.
Verification of (A3): Note that
O ,_1, \ .o, \Of(2)
and
3f($) o 1-2H 1-2H 0
s = 9 H)sl T L(z) — 29(H)|z| 7 L(z) log |2] + > o fe(@ + 2k)

k£0
~ —2g(H)|z|"?" L(0)log|z|, for z — 0.
where ¢'(H) = 0g(H)/0H. Thus,

0 . jz[' =" log |z
8—Hf (z) = CW, for z — 0

= O(|z|“D=) for all § > 0.

Similarly,

0 . g(H)z|"27
2 l(x) ~ 2| |2—4H
do o?|x|

= O(|z|*®=9) for all § > 0,

forz — 0

and for HJ € {alg"'aapvlﬁla"'aﬁq}a

|x|172H

9
8—0]f (x) = C‘x|2_4H,forx—>0

= O(|z|*D~°) for all § > 0.
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The higher derivatives can be treated in the same way with increasingly compli-
cated expressions for the derivatives. Maximal order for second-order derivatives
is 2271 (logz)? and for third-order derivatives x>~ (logz)® which are O(24?)~?)
for all § > 0. See also p. 35 of Comte(1996).

(A4) (0/0z) f(x) is continuous at all (z,8),  # 0, and

S (@) = O(Ja40%),

Verification of (A4):

% (#) = g(H)A—2H)[z| *"L(z) + g(H)|x|' *" L(z)
+> é%fc(a: + 2km)
k0

Q

g(H)(1 —2H)|z|"" L(0), for x — 0
= O(|z|~¥9~1=%) for all § > 0.

(A5) (0%/0x06;) f~'(x) is continuous at all (z,0), z # 0, and

* d(0)—1-6 :
= <7<np.
axaojf (z) = O(|=| 1<j<p
Verification of (A5): Note that
0 1\ op3.0f(2)0f(x) —2 0
83:80jf (z) =2f (@Wa—ej —f (@mf(l‘),
and
52

Gog @ = (= 2H)g (B)|al ™" L(z) — 29(H)a| " L)

—2(1 — 2H)g(H)|z| " L(z) + g'(HZ)|fU|1*2HL(fE)
—2g(H)|z| 22 L(z) log |z| + 1; afﬁfc(x + 2k).

(A6) (0%/9%200;)f~'(x) is continuous at all (z,0), z # 0, and

?* g ,
Fogg! @) =00, 1< i <p,
J

Verification of (A6): similar to that of (A5) and hence omitted.
(A7) (8/0z)f'(z) and (8*/0x?)f~'(z) are continuous at all (z,0), z # 0, and

k
<§> f7H(z) = 012l +),0 < k < 2.

20



Verification of (A7): The results follow from the fact that

9 .. _ o, £ Of(2)
i) = 2w,
2 o (0F@N L, 02 f(2)
el @) = 2 (U2 - e 2L,
where
9 by = o)1 - 2H) e[ L(x) + g(HD)|a| " E(x) + 3

9
oz iz0 0T
g(H)(1 —2H)L(0)|z|~%#, for x — 0,

Q

and
aa_; (z) = —2H(1—2H)g(H)|z|™*""'L(z) + (1 — 2H)g(H)|z| " L(z)
+(1 - 25)9(H)I£I‘2Hi(x) + g(H)|z["*" L(x)
+> %fc(x + 2km)

k=0
—2H(1 —2H)g(H)L(0)|z|~*~1, for x — 0.

Q
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